
International Journal for the Scholarship of
Teaching and Learning

Volume 2 | Number 2 Article 5

7-2008

The Impact of Grading on the Curve: A Simulation
Analysis
George Kulick
Le Moyne College, kulick@lemoyne.edu

Ronald Wright
Le Moyne College, wright@lemoyne.edu

Recommended Citation
Kulick, George and Wright, Ronald (2008) "The Impact of Grading on the Curve: A Simulation Analysis," International Journal for the
Scholarship of Teaching and Learning: Vol. 2: No. 2, Article 5.
Available at: https://doi.org/10.20429/ijsotl.2008.020205

http://digitalcommons.georgiasouthern.edu/ij-sotl?utm_source=digitalcommons.georgiasouthern.edu%2Fij-sotl%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgiasouthern.edu/ij-sotl?utm_source=digitalcommons.georgiasouthern.edu%2Fij-sotl%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgiasouthern.edu/ij-sotl?utm_source=digitalcommons.georgiasouthern.edu%2Fij-sotl%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgiasouthern.edu/ij-sotl?utm_source=digitalcommons.georgiasouthern.edu%2Fij-sotl%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgiasouthern.edu/ij-sotl/vol2?utm_source=digitalcommons.georgiasouthern.edu%2Fij-sotl%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgiasouthern.edu/ij-sotl/vol2/iss2?utm_source=digitalcommons.georgiasouthern.edu%2Fij-sotl%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgiasouthern.edu/ij-sotl/vol2/iss2/5?utm_source=digitalcommons.georgiasouthern.edu%2Fij-sotl%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages


The Impact of Grading on the Curve: A Simulation Analysis

Abstract
Grading on the curve is a common practice in higher education. While there are many critics of the practice it
still finds wide spread acceptance particularly in science classes. Advocates believe that in large classes student
ability is likely to be normally distributed. If test scores are also normally distributed instructors and students
tend to believe that the test reasonably measures learning and that the grades are assigned fairly. Beyond an
intuitive reaction, is there evidence that normally distributed test scores appropriately distinguish among
student performance? Can we be sure that there is a significant correlation between test scores and student
knowledge? Testing these assumptions would be difficult using actual subjects. In this paper we use
mathematical models and Monte Carlo simulation to test the assumption that normally distributed grades
assign the highest grades to the students who were best prepared for an exam.
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Abstract 
Grading on the curve is a common practice in higher education. While there are many critics 
of the practice it still finds wide spread acceptance particularly in science classes. Advocates 
believe that in large classes student ability is likely to be normally distributed. If test scores 
are also normally distributed instructors and students tend to believe that the test 
reasonably measures learning and that the grades are assigned fairly. Beyond an intuitive 
reaction, is there evidence that normally distributed test scores appropriately distinguish 
among student performance? Can we be sure that there is a significant correlation between 
test scores and student knowledge? Testing these assumptions would be difficult using 
actual subjects. In this paper we use mathematical models and Monte Carlo simulation to 
test the assumption that normally distributed grades assign the highest grades to the 
students who were best prepared for an exam.  
 
Key Words: Grading on the Curve, Computer Simulation, Student Performance 

 
Introduction 

 
Grading on a curve, in one form or another, is a common practice in higher education. The 
practice is often criticized for ignoring the possibility that an instructor and the class may 
have together worked to the point where more than half of the students have earned a top 
grade (Roth, 2000). Critics also suggest that grading on a curve does not provide the ideal 
incentives for student motivation (Michaels, 1976).  But the practice also has wide spread 
support. It is advocated as an antidote to grade inflation. It is also used in contexts in which 
institutions feel the obligation to distinguish among performances for the purpose or 
evaluating students for professional and graduate schools. While critics tend to argue that 
goals ought to focus more on teaching and less on evaluation and ranking, both sides seem 
to agree that grading on a curve is well suited for this ranking function. It is, in fact, this 
last assumption that this paper challenges.  
 
Can we be confident that grading on a curve results in assigning the best grades to the best 
students? Addressing this question is complicated by a number of factors. If we try to 
measure the extent to which the higher test scores are associated with the higher levels of 
learning or achievement, we are confronted with the reality that the test itself is intended to 
be our measure of achievement. Furthermore we are likely to have difficulty agreeing on 
what should be meant by the best students. Is it the best prepared, those with the best 
ability, those who have learned the most? And how would we distinguish among and 
measure performance for these alternative definitions? Even when we address all these 
factors we will always find ourselves constrained by the relatively small samples from the 
student population which we can involve in our experiments. To address all these concerns 
we propose using Monte Carlo simulations to create large populations of students exactly  
matching a range of assumptions and then administering hypothetical exams to these  1
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hypothetical students. These mathematical simulations will allow us to vary our assumptions 
about the students and the exams and consequently investigate the extent to which the 
best students (by whatever definition we elect to use) obtain the best scores. 
 
The first section of the paper briefly examines the concept of grading on the curve. It is 
followed by a section that describes the simulation model and the assumptions on which the 
various models are based. Subsequent sections contain the results of the simulations as we 
progress from typical students at competitive institutions to an extreme case of highly 
motivated pre-med students at the most selective institutions. In each case we look at the 
correlation between performance on the exams and student preparedness for the exam. The 
final sections focus on initial observations, potential impacts on students, and directions for 
additional work. 
 
 

The Concept of Grading on the Curve 
 

Grading on the curve has long been an accepted form of student assessment, particularly in 
large classes. In reality, grading on the curve has come to have a variety of meanings to 
students and instructors (Wall, 1987). The most simplistic, and perhaps the most commonly 
embraced by students, is the practice of adding points to all grades to bring the highest test 
scores up to the 100 point range.  This practice is actually more commonly referred to as 
curving grades and an instructor might often say he or she decided to curve the grades on 
an exam that turned out to be more difficult than anticipated. In other instances curving 
grades is associated with predetermining, independent of performance on an exam, a fixed 
percent of students that receive each grade. This can be a means of assuring that in each 
class roughly the same percent of students receive the same final grades independent of the 
difficulty of specific exams or instructors. For example, the Psychology Department at a 
large US university has recommended distributions that result in 15% A’s, 25% B’s, 45% 
C’s, 10% D’s and 5% F’s (Wedell, Parducci, & Roman, 1989). In this form, grading on a 
curve is seen as an antidote to grade inflation and can even be based on informal or formal 
institutional policy. For example, according to a very recent article in Boston University’s 
The Daily Free Press (Maxwell, 2007), university policy suggests that the mean grade in 
large classes should be around B-minus or C-plus. In reality issues of grade inflation have 
existed for at least three decades (Abbott, 2008). 
 
However, the original use of the phrase, grading on the curve, was based on the assumption 
that student abilities, particularly in large classes of hundreds of students, would most likely 
be normally distributed. It often argued that “exam scores tend to be normally distributed 
for well-constructed, norm-referenced, multiple choice tests (Wedell et al, 1989, p.239). In 
an experiment conducted by Wedell et al (1989), students were asked to assign grades to 
test scores that matched four different distributions, a normal distribution, a U-shaped 
distribution, and positively and negatively skewed distributions. Without any knowledge of 
the subject material, students were also asked how well the test measured knowledge for 
each of the distributions. The students rated the normally distributed test scores 
significantly higher than the other distributions. In general it is common to associate 
effective exams with normally distributed scores. Consequently, it is not a surprise that 
instructors feel they have created a fair and effective exam whenever they graph the test 
score distribution and see that it resembles the bell-shaped curve. As any student can 
attest, individual instructors use a variety of approaches to distributing the grades normally. 
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Johari and Sclove (1976) described one such approach, but most approaches end up 
assigning the letter grades in a manner represented in Figure 1.  
 
In the case represented in Figure 1, grades are curved to an average grade of C. In other 
instances instructors curve to a low B, having A’s and B’s for students above the mean and 
C’s and D’s for those below the mean. In this case F’s are assigned to outliers. Throughout 
the remainder of this paper we will use the phrases “grading on the curve” and “curving 
grades” to represent the practice of fitting letter grades to a normal distribution.  
 
 
               Figure 1.  Assigning Letter Grades Based on Normally Distributed Numerical Scores 

numerical score

number of 

students

F D C B A

 
 
 
This commonly used form of grading has both its critics and proponents and the topic is one 
often discussed in education public forums (“Grading on a Curve”, 2007). Many argue that it 
is unfair to automatically assign low grades to the lower end of the class when it is possible, 
in some classes, that all of the students will have achieved a certain mastery of the material 
and deserve grades that recognize their level of performance. Proponents of grading on the 
curve argue that as long as the performances on the exam vary according to a normal 
distribution, it is reasonable to have the grades also be normally distributed.  The practice is 
perhaps the most commonly applied in introductory science classes in large universities 
(Maxwell, 2007). 
 
In a large introductory chemistry class at a competitive university it is reasonable to expect 
that grades on a typical exam will be normally distributed and grading on a curve seems 
reasonable. But that same exam given to a chemistry class for pre-med students at a highly 
selective university might well result with half the students obtaining a near perfect score, 
hardly a normal distribution. In this case, grading on the curve would not be practical. Yet 
many highly selective universities seem to insist that all pre-med courses be graded on the 
curve. Consequently the chemistry exam at such a university must be more difficult in order 
to assure that the resulting exam scores are normally distributed. Although it may not be 
official policy, it is common practice at these highly selective institutions to ensure that the 
level of difficulty of exams result in normally distributed scores. Specifically, it is the 
practice in all pre-med courses at the two such universities which will form the context for 
our analysis. These two institutions were chosen merely to have a context for the discussion 
and were two which the authors were able to identify as having at least implicit grading 
policies. However there is no reason to imply that these outstanding institutions stand out in 
any way from their peers in this practice. Hence throughout the course of the paper we will 
refer to them only as institutions A and B.  

3
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Reasons for grading on the curve at these institutions are not publicly discussed. However 
we can assume some possible rationales. Supposedly these institutions and their professors 
feel compelled to distinguish performance among these outstanding students, to identify 
which students performed the best in the class and which were the poorer performers. 
Perhaps such rankings are designed to heighten the reputation of the institution by sending  
forward only the very best. Perhaps they are attempting to avoid grade inflation so that 
their best students will be clearly identified for the best medical schools. In many cases it is 
the very best institutions that are the most concerned about grade inflation (Gordon, 2006). 
However, any of these (or other reasons) must be based on the assumption that the best 
grades are going to the best students. It is this basic assumption that our work is designed 
to investigate. Does grading on the curve always, or even frequently, result in the best 
students getting the best grades?  
 
 

Simulation Model 
 
Investigating the assumption that the best students get the best grades would be difficult 
with samples of actual students. First defining what we mean by the best student is difficult. 
Do we mean the student with the best ability? Do we mean the student who is best 
prepared for the exam? Do we mean the students who know the most? And how would we 
assess the best by either of these measures other than by giving them an exam?  How do 
we take into account how hard the student studied, or how well they take exams, or how 
they were feeling that particular day, or whether the exam was a fair exam? 
 
A computer simulation model allows us to precisely define all of the assumptions in our 
analysis and to generate the observations accordingly. It gives us the ability to isolate the 
particular question at hand. We define our model based on 400 students taking three exams 
each made up of twenty questions. Initially we assume that all questions on the exam are 
equally difficult. In addition, we assume that the abilities of these 400 students are normally 
distributed, regardless on whether they belong to a “typical” or “highly selective” group.  
The following analysis distinguishes between the two groups by assuming the typical group 
has a smaller average level of ability with a larger standard deviation. 
 
Our definition of the ability of a student is the probability that the given student will 
correctly answer a given question.  Hence it actually refers to the how well the student is 
prepared to take the particular exam. Consequently we are not trying to determine whether 
that preparedness is a consequence of innate ability, hard work, positive attitude, or 
anything else. Throughout this paper, whenever we refer to student “ability” or student 
“preparedness”, we use the terms in the precisely defined sense of the probability of getting 
a particular question correct on a given exam. To represent this probability, each of our 400 
students is randomly assigned a value between 0 and 1 from a normal distribution with a 
given mean and standard deviation. The selected mean will indicate the overall ability of the 
group of students and the selected standard deviation will indicate the range of ability. A 
student assigned a value of 0.762, for example, would on average get 76.2% of the exam 
questions correct, assuming that all the questions on the exam are of equal difficulty. 
Subsequently, when we assume varying levels of difficulty for exam questions we will raise 
or lower these probabilities for particular questions. Since we selected the probabilities from 
a normal distribution we have met our assumption that the “abilities” of our 400 students 
are normally distributed.  
 
While the student in our example is expected to get 76.2% of the exam questions correct 
on average, for any particular exam the student could obtain a much lower or higher score. 
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We are assuming that, given limited time for a test, no science exam contains questions 
from all the covered material. Consequently, at one extreme, our student, who in essence  
 
knows 76.2% of the material well, might be given an exam in which all of the questions fall 
within that 76.2% and the student could get a perfect score on the exam. At the other end, 
if much of the material on the exam falls outside the 76.2% the student knows well, the 
resulting score would be much lower. Hence there is a random factor to the exam and it is 
this randomness that justifies the use of a computer simulation. 
 
Randomness in a simulation model is produced by a random number generator. The most 
basic random numbers that initialize simulations are generated using a uniform distribution 
of numbers between 0 and 1. To simulate performance on an exam question, we randomly 
assign such a number to each question. A student is assumed to get the question correct if 
the value assigned to the student is greater than or equal to the value assigned to the 
question. This assumes each question is scored as correct or incorrect without partial credit. 
Again, consider the student with the assigned value of .0762.  Since 76.2% of the numbers 
between 0 and 1 fall below 0.762, our student will on average get 76.2% of the questions 
correct.  Of course students with higher ability (higher assigned values) are more likely to 
get any given question correct. As an illustration, Table 1 contains the results for one exam 
(20 questions) for a student with an assigned value (or measure of ability) of 0.762.   
 
 
                                 Table 1.  Simulated Exam Grade for One Student 

 
 
The assigned score is the percent of questions the student got correct on this particular 
exam. In this instance the student with an assigned ability level of 0.762 obtained a score of 
70. On a different exam of the same level of difficulty the student might well receive an 80. 
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For an infinite number of exams we are of course assuming the student would have an 
average score of 76.2. Finally we calculate a student’s course average as the mean score of  
three exams. A complete simulation would produce course averages for each of 400 
students based on the three exam scores.  
 
Simulating a Typical Group of Students 
In our initial simulation we model typical students at a typical university. The first step is to 
define the normal distribution that will be used to assign random abilities (probability of 
answering a question correct) for the 400 students. We use a mean of 0.75 indicating that 
the average student will get (on average) 75% of the questions correct. In this case we will 
assume that our student ability ranges from 0.50 to 1.00.  Since six standard deviations  
cover 99.74 % of all values, we will use as our assigned standard deviation 1/6th of the 
range. An average of 0.75 and a standard deviation of 0.083 (0.5/6) of course allows for the 
possibility of a few values in excess of 1.00. All values in excess of 1.00 are modeled to 
represent students getting all questions correct and the distribution is effectively truncated 
at 1.00.   
The results of our first simulation are summarized in Figure 2, a frequency histogram for the 
course average (the mean of the three exam scores) for our 400 students. As expected, the 
averages appear to be normally distributed with a reasonable range from 50’s to 100. 
Grading on a curve to assign final grades seems perfectly reasonable.  
 
 
                       Figure 2.  Frequency Histogram of Course Averages for Typical Class 
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As a result of the simulation, we have, for each of our 400 students, the assigned measure 
of ability (or preparedness) as well as the course average.  We can, therefore, measure the 
correlation between the two. Figure 3 contains a graph of the preparedness versus course 
averages for the 400 students. The resulting correlation is 0.81 with a 95 % confidence 
interval of (0.76, 0.86). Hence we have strong evidence that a correlation exists between 
preparedness and course averages.  However, from the graph in Figure 3 we can also 
observe that students with average preparedness (0.75) end up with course averages 
ranging from 60 to mid 80’s. If these students, who are equally well prepared, are graded 
on a curve the resulting letter grades will range from a D to a B. Our assignment of 0.75 as 
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a level of preparedness suggests that each student knows 75% of all possible test material. 
Since few tests cover all possible material, the variation in the grades is a result of the  
extent to which the student was lucky enough to have the material he or she knew show up 
on the exam. 
            
 
           Figure 3.  Relationship between Preparedness and Course Average for Typical Students 
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Modeling Students at Highly Selective Institutions 
Some of the criticism of grading on the curve is directed to situations in which all of the 
students are highly qualified and well prepared. Is it fair to curve their grades so that some 
automatically receive C’s and D’s?  Independently of whether it is fair, our analysis focuses 
on whether or not we can be sure that the best prepared students get the higher grades. 
Our next simulation examines the performance of these students. We have derived the 
context of this simulation from two actual institutions that do (at least by practice) grade 
pre-med classes on a curve. At these two institutions the average SAT scores for entering 
freshmen are 1350 and 1325. Hence the average student at each institution is in the top 
7% of all senior college-bound SAT test takers (“SAT Percentile Ranks”, 2008). We can 
further heighten the level of selectivity among these students by simulating grade 
distributions in pre-med courses. Both of these schools designate separate courses almost 
exclusively for pre-med students.  
 
Therefore, the premise of our following argument is that these students are largely the best 
students from a very select group. To demonstrate how these students compare to the 
group described above, we simulate the outcome of them taking the same (typical) exam. 
To represent their higher ability/preparedness, we simulate the probability of each of them 
getting any given question correct from a normal distribution with a higher mean, say 0.95, 
and a smaller range of probabilities, say 0.9 to 1.  This suggests that these highly talented 
and highly motivated students would virtually all get 90% of the questions correct in a 
typical introductory science class taught at a typical competitive university. The result from 
running our simulation with this group of very good students is summarized in the 
frequency histogram in Figure 4. 
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                  Figure 4.  Frequency Histogram for Very Good Students taking Typical Exams 

Frequency Distribution of Course Averages
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The course averages for the three exams are no longer normally distributed and grading on 
a curve is less practical. In addition, the highly capable and motivated students would not 
accept D’s for scores in the high 80’s or B’s for scores in the mid 90’s. But one could argue 
that the exams used at our typical institutions are not the exams used at these highly 
selective universities. In order to appropriately consider grading these students on a curve, 
instructors must make the exams more difficult, more specialized, or even more obscure to 
insure that fewer students get high scores. The consequence of a more difficult exam is to 
reduce the ability of these students to get the questions correct. We can model this increase 
in exam difficulty by lowering the average probability that students will get any given 
questions correct. So, in effect, when we reduce the mean of the normal distribution 
simulating the probability of getting a question correct we model either lowering student 
preparedness or a more difficult exam. Smaller standard deviations result in a smaller range 
and model a more homogenous group of students.  
 
To simulate a harder exam for the top students, we will assign the random values for 
preparedness from a normal distribution with a mean of 0.75 rather than the previous 0.95. 
Thus the average grade on the exams should drop from around 95 to around 75. However 
the range in ability of the students did not change. We will make the modeling assumption 
that range of preparedness for the harder exam does not increase and hence we will use the 
same standard deviation as before and consequently the range of values will largely fall 
between 0.70 and 0.80 (rather than 0.90 and 1.00). Figure 5 contains the resulting 
frequency histogram for this simulation. 
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            Figure 5.  Frequency Histogram for Very Good Students Taking a Hard Exam 

Frequency Distribution of Course Averages
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Now it appears that all is right with the world. The grades are normally distributed. The 
range is from the 60’s to the 90’s. Grading on a curve seems feasible at this point. 
Admittedly some outstanding students are going to receive low grades. But we have at least 
been able to distinguish among the performances of the students. But can we be confident 
that the better students got the better grades? Again we can calculate the correlation 
between student preparedness and the resulting grades. Figure 6 contains the results for 
the 400 students. In this instance the correlation has dropped to 0.23 with a 95% 
confidence interval of (0.15 to 0.31). We still have evidence that the correlation between 
preparedness and average scores is positive but it is certainly not strong. 
 
 
        Figure 6.  Relationship Between Preparedness and Course Averages for Very Good Students 
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It is also of interest to begin to imagine the impact on specific (but still hypothetical) 
students. Our averagely prepared students (from among this group of top students) 
obtained averages from the 60’s to the 90’s and hence letter grades from D’s to A’s. Most 
notably, the two students with the highest level of preparedness (0.80) end up with 
averages of 65 and 75 and would get a C and a low B when graded on a curve. In the highly 
competitive environment getting a C or low B when you believed (correctly) that you were 
extremely well prepared for the exam can be very discouraging. Low B’s are not going to be 
adequate for getting into good medical schools and many students will be sufficiently 
discouraged to drop out of the pre-med program. This “weeding out” is evidently a goal in 
some cases. However, it would be unfortunate if it is in fact the very best who are 
discouraged in this environment.  
 
Modeling the Extreme Case 
There is ample evidence that students drop out or are weeded out of the pre-med programs 
across the country.  It is certainly the case in the two institutions we have used to provide 
the context of our simulation.  When you compare the number of students in the pre-med 
sections of introductory chemistry to the number of students in the subsequent organic 
chemistry course, the drop is significant every year. Table 2 contains the counts for one 
year at the two universities. 
 
                    Table 2.  Course Enrollments in Pre-Med Chemistry Classes 

 General Chemistry Organic Chemistry 
University A 1359 614 
University B 701 361 

 
In each instance approximately one half of the pre-med students who take General 
Chemistry do not continue on to the Organic Chemistry class. Hence by the time we are 
grading these remaining pre-med students at these highly selective institutions we are 
certainly trying to distinguish performance between a group of students with very similar 
levels of ability and motivation.  We model this most extreme case by selecting our random 
values for preparedness from a normal distribution with a smaller range, namely 0.74 to 
0.76. We have assumed the instructors will continue to make the exams difficult enough to 
justify using a mean level of preparedness of 0.75. So essentially we are claiming that we 
now have a group of students in which the differences in ability or preparedness to take an 
exam are virtually indistinguishable. However, as illustrated in Figure 7, the exam results 
still show a nice normal distribution for our course averages, ranging from below 60 to the 
90’s. 
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                   Figure 7.  Frequency Histogram for Excellent Students Taking a Hard Exam 

Frequency Distribution of Course Averages
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Greatly reducing the range of student ability did not reduce the range or grades or the 
likeliness that the grades would be normally distributed.  Figure 8 contains the specific 
results for 400 students. Here, the calculated correlation is 0.01 with a confidence interval 
of (-0.07, 0.09). Consequently, we no longer have sufficient evidence that there is any 
correlation between preparedness of the very top students and their course average. In 
fact, in this particular simulation, the student with the highest level of preparedness ends up 
with a course average of 72, below the class average, and would receive a grade in the 
C+/B- range. Some students in the top 10% of the level of preparedness had course 
averages in the low 60’s and could end up with C-‘s or even D’s, potentially fatal grades on 
organic chemistry for a pre-med student. It has become a matter of pure luck!   
 
               Figure 8.  Relationship Between Preparedness and Grades for Excellent Students 
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What happens when we carry our model to the extreme and assume that all the students 
are precisely identical? We can certainly run one more simulation for this scenario using a 
mean student ability of 0.75 and a standard deviation of zero, and Figure 9 contains the 
resulting frequency histogram. Thus 400 identically prepared students taking three exams 
each made up of 20 questions will end up with grades ranging between 60 and 90.  In this 
extreme case of 400 identical students we still observe an approximately normal distribution 
of test scores even though there is no variation in student ability (or preparedness). There 
is clearly no correlation between preparedness and test scores.  
 
                                  Figure 9.  Frequency Histogram for Identical students 
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In scientific analysis, as well as in class room instruction, extreme cases often offer 
informative results. Perhaps an informative simulation would be one in which we administer 
a 20 question true false organic chemistry exam to 400 monkeys. It is a reasonable 
assumption that our monkeys have equal knowledge of organic chemistry. But, since it is a 
true false exam, each monkey has a 50% chance of getting any question correct. Some 
monkeys will be more lucky than others. Figure 10 contains the frequency histogram for the 
number of questions each monkey gets correct.  
 
Of course our students are not monkeys. But our exams can approach levels that do no 
better job distinguishing among students, particularly as the task becomes more difficult 
when class populations are more homogenous. Merely making exams more difficult does not 
automatically improve the ability of the exam to rank student performance. Anecdotal 
evidence abounds of science exams with mean scores around 50% and with no students 
getting all the questions correct. Are these exams effective measures of learning or merely 
exams that will guarantee normally distributed test scores.  As our monkey simulation 
illustrates, the more randomness and luck play a factor in these exams, the more likely the 
scores will automatically be normally distributed. Normal distributions alone are not 
evidence of an effective exam.  
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           Figure 10.  Frequency Histogram for Monkeys 
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Initial Observations 
 

This analysis of extreme scenarios helps us to understand our problem in general. First our 
analysis focused on the extreme case of classes made up of the very best students. The 
scenario of the monkeys represents the complete extreme. The first and most obvious 
conclusion is that normally distributed test scores offer no independent evidence that the 
test has appropriately distinguished between the abilities of the test takers. Hence 
instructors cannot make the claim that just because they have test scores that are normally 
distributed they must have designed an exam that fairly distinguishes among student 
abilities. But although the results are most obvious in the extreme case, they also indicate 
that the problems apparent at the outermost levels of homogeneity, are also evident, all be 
it to a lesser degree, in all cases.  
 
The extreme case brings the not so obvious to our attention. But our simplified models also 
provide potential insights into real life situations. This simulation model clearly provides the 
insight that the correlation between ability (as defined in the model) and final test averages 
is dependent on the both the mean and the standard deviation of the level of preparedness 
assigned to the 400 students. For a fixed mean (0.75) the correlation between ability and 
test scores declines as the standard deviation decreases as summarized in Table 3.  
 
 
          Table 3.  Relationship between Standard Deviation and Correlation 

Mean 
Preparedness 

Standard Deviation of 
Preparedness 

Correlation between Preparedness 
and Average Test Scores 

0.75 0.083 0.81 
0.75 0.017 0.23 
0.75 0.004 0.01 
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Consequently the model suggests that as the students in a class become more similar in 
level of preparedness to take a test, the role of luck in determining their test score 
increases. Clearly the means and standard deviations in our model were selected somewhat 
arbitrarily. But the relationship between the standard deviation and correlation is  
unmistakable. Specific instructors can argue that as they make their exams more difficult 
they are also somehow making them such that the standard deviation of student 
preparedness also increases. However they cannot continue that argument forever. Clearly 
there is no ability to design an exam that will distinguish ability in the extreme case of a 
standard deviation of zero. And again, just as clearly, a normal distribution of test scores, 
by itself, provides no evidence of the exam’s capacity to correlate grades with ability. Just 
as importantly, the model suggests that even when there is more variation in student 
ability, luck still plays a role that can affect some students significantly.  
 
The primary conclusions of these simulations are best illustrated in the context of the 
extreme case of the outstanding students in large science classes. However the results can 
contribute to discussions about student assessment in all disciplines. In many fields text 
books come with test banks of multiple choice questions and instructors can randomly select 
the questions for their exams based on the chapters they have covered. There is certainly a 
high level of randomness associated with this approach.  At the same time the results might 
well suggest that science faculty whose primary training for their profession took place in 
their research Ph.D. programs should reach out to assessment and evaluation experts to 
seek better tools for determining the validity of their testing schemes. None of us should 
any longer find comfort in the fact that our student test scores are normally distributed. 
 
 

Assessing the Validity of the Simulation Model 
 
As with any model, there can be questions about the validity of the assumptions that drive 
the model. In many cases we use our models to evaluate the extent to which we should 
consider more expensive testing in actual settings. Industrial chemists use simulation 
models to conduct lab experiments. Simulation results that show promise are then actually 
performed in the lab. As educators react that this simulation model raises concerns about 
grading on a curve many of the assumptions and conclusions of the model could be verified 
from real data. Given willing participation from enough institutions, the assumption that 
exams are designed to produce normal distributions of test scores can be investigated by 
looking at actual test scores in large sections for a variety of courses and universities. The 
model’s actual conclusion that eventually there is little correlation between test scores and 
student preparedness could in part be investigated by measuring the correlation between 
test scores for individual students. If luck plays an increasing role in test scores there 
should be evidence that students’ scores will vary significantly from one test to another. 
Conversely, the same students getting the higher scores all the time would argue against 
the conclusion of the model.  
 
Our use of a value to represent the probability that a student will get a question correct 
appears to match reality for exams in science classes. In the typical environment it is easy 
to accept that most exams cannot include questions about everything that was covered in 
the class or in the text. Hence if a student has mastered only 75% of the material, there is 
a chance that the exam will include questions only from that 75% and the student could get 
a 100. Of course many students believe the luck only goes the other way. In the 
environment where the classes are filled with excellent students, the exams must be made 
so difficult that luck is based on whether the student happened to remember tiny obscure 
details. In fact it is not uncommon for these very difficult exams to have mean scores in the 
50’s or 60’s with no students getting all questions correct. As our simulations illustrate, luck 
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becomes even more a factor in this case. Fully investigating these assumptions would 
probably require a more qualitative analysis based on interviews with students and faculty.  
 
All of these investigations would be non-trivial. The power of the simulation model is that it 
suggests that further discussion and investigation is warranted, particularly given the 
impact the practice of grading on a curve can have on individual students. 
 
 

Potential Impact on Students 
 
The simulation results emphasize the role luck could play in student performance on exams. 
The resulting impacts on students can be substantial. In the case of the pre-med students 
at the highly selective institutions, those who are discouraged from pursuing a medical 
career are perhaps chosen through a random process. While grades are by no means a sole 
determinant of admission to med school, students who do poorly in initial courses will often 
eliminate themselves in the first two years of undergraduate work. And there is evidence 
(Crocker, Quinn, Karpinski, & Chase, 2003), that female students who have worked hard 
and fail to achieve the results that they expect are more likely to be effected than their male 
counterparts. There is also evidence (Schoon, Ross, Martin, 2007), to support that female 
students are more likely to drop out of highly competitive majors. Serious students who 
expect their high level of hard work and preparation to pay off are also more likely to be 
discouraged than those who have learned to lighten up and expect luck to play a role in 
assessment. Is it possible that this process in fact “weeds out” personality characteristics 
rather than academic ability? And if so, are we confident that these are the characteristics 
we wish to discourage? For these excellent students, don’t we owe them a form of 
assessment that reduces luck and encourages all highly capable students to pursue the best 
possible use of their talents?  Furthermore, we should also acknowledge that grading on the 
curve can introduce a luck factor to some degree in assessing all students (not just the top 
students).  
 
 

Final Observations 
 
The simulations described in this paper point out potential flaws in commonly used grading 
practices. Unfortunately it does not necessarily point to suggestions for addressing those 
flaws. Further simulations could be used to evaluate the design of alternative testing 
options. Some simple questions can be asked. For example, our analysis assumed that all 
the questions were equally difficult. Further simulations were run to see if varying the level 
of difficulty among questions had any significant impact. As an example, we tried exams 
made up of 5 easy question, 10 moderate questions, and 5 hard questions. In most cases 
the correlation between ability and grades did not change. It did have the impact of making 
the results for the easy exam for very good students more normally distributed but at the 
same time it lowered the correlation between ability and grades. One could test the impact 
of more questions or more exams, or a wider variety of difficulty. In the end, however, the 
ideal assessment tool will likely require a reduction in the random factor. 
 
The simulations in this paper assumed that all test questions were graded as correct or 
incorrect. While the exam questions are seldom true/false, they are often multiple choice or 
problem solving exercises that are graded without partial credit. This is a common format 
for large introductory science classes and one used almost exclusively in the chemistry and 
organic chemistry classes at one of our case institutions. In part, grading on a 
correct/incorrect basis is assumed to be necessary due to the large class sizes. One possible 
improvement to the standard multiple choice exams could be to allow for the possibility of 
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second best answers (worth fewer points than the best answer). Simulation models could be 
used to investigate the extent to which the luck factor is reduced by this type of exam.  
 
Roth (2000) made a connection between assigning grades and salaries. Salaries and in 
particular merit pay are often discussed in the context of the extent to which merit pay 
increase motivation for higher performance. Among those who argue in favor of merit pay, 
there is an understanding of the importance of the evaluation process in determining levels 
of merit. Quality control guru W. Edwards Deming (1986) introduced his famous Red Bead 
Game precisely to illustrate the extent to which randomness in evaluation systems can lead 
to highly inappropriate conclusions. Hence, perhaps our primary task is to look for forms of 
evaluation that minimize random factors and produce results that in the end would make us 
more comfortable evaluating students on an absolute level. Undoubtedly such forms of 
evaluation would require far more work than merely producing increasing difficult 
examinations. The results from this paper at least point out that normal distributions of test 
scores do not provide independent verification of effective education or effective evaluation 
of students. We certainly are obligated to all of our students to do better not just in our 
teaching but in our assessment of student performance as well. 
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